Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(17): 11270-11283, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629732

RESUMEN

Teeth exemplify architectures comprising an interplay of inorganic and organic constituents, resulting in sophisticated natural composites. Rodents (Rodentia) showcase extraordinary adaptations, with their continuously growing incisors surpassing human teeth in functional and structural optimizations. In this study, employing state-of-the-art direct atomic-scale imaging and nanoscale spectroscopies, we present compelling evidence that the release of material from ameloblasts and the subsequent formation of iron-rich enamel and surface layers in the constantly growing incisors of rodents are complex orchestrated processes, intricately regulated and independent of environmental factors. The synergistic fusion of three-dimensional tomography and imaging techniques of etched rodent́s enamel unveils a direct correlation between the presence of pockets infused with ferrihydrite-like material and the acid resistant properties exhibited by the iron-rich enamel, fortifying it as an efficient protective shield. Moreover, observations using optical microscopy shed light on the role of iron-rich enamel as a microstructural element that acts as a path for color transmission, although the native color remains indistinguishable from that of regular enamel, challenging the prevailing paradigms. The redefinition of "pigmented enamel" to encompass ferrihydrite-like infusion in rodent incisors reshapes our perception of incisor microstructure and color generation. The functional significance of acid-resistant iron-rich enamel and the understanding of the underlying coloration mechanism in rodent incisors have far-reaching implications for human health, development of potentially groundbreaking dental materials, and restorative dentistry. These findings enable the creation of an entirely different class of dental biomaterials with enhanced properties, inspired by the ingenious designs found in nature.


Asunto(s)
Esmalte Dental , Animales , Esmalte Dental/química , Esmalte Dental/metabolismo , Esmalte Dental/efectos de los fármacos , Compuestos Férricos/química , Compuestos Férricos/farmacología , Ratas , Color , Ratones , Incisivo/química , Incisivo/metabolismo , Diente/química , Diente/metabolismo
2.
Nano Lett ; 24(18): 5556-5561, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38668651

RESUMEN

We report step edge-induced localized defects suppressing subsequent antiphase boundary formation in the bulk structure of a trilayer oxide heterostructure. The heterostructure encompasses a layer of La0.66Sr0.34MnO3 sandwiched between a superconducting La1.84Sr0.16CuO4 bottom layer and an insulating La2CuO4 top layer. The combination of a minor a-axis mismatch (0.11 Å) and a pronounced c-axis mismatch (2.73 Å) at the step edges leads to the emergence of localized defects exclusively forming at the step edge. Employing atomically resolved electron energy-loss spectroscopy maps, we discern the electronic state of those structures in the second La0.66Sr0.34MnO3 unit cell near the step edge. In particular, a reduction in the pre-edge region of the O-K edge indicates the formation of oxygen vacancies induced by the strained step edge. This study underscores our capability to control defects at the nanoscale.

3.
Nat Commun ; 15(1): 2541, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514672

RESUMEN

Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged probes, which fail to pinpoint the exact atomic position and chemical state of the intercalants in real space. Here, by using atomic-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we visualize a stacking-selective self-intercalation phenomenon in thin films of the transition-metal dichalcogenide (TMDC) Nb1+xSe2. We observe robust contrasts between 180°-stacked layers with large amounts of Nb intercalants inside their vdW gaps and 0°-stacked layers with little detectable intercalants inside their vdW gaps, coexisting on the atomic scale. First-principles calculations suggest that the films lie at the boundary of a phase transition from 0° to 180° stacking when the intercalant concentration x exceeds ~0.25, which we could attain in our films due to specific kinetic pathways. Our results offer not only renewed mechanistic insights into stacking and intercalation, but also open up prospects for engineering the functionality of TMDCs via stacking-selective self-intercalation.

4.
Adv Mater ; : e2310817, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441396

RESUMEN

Control of nanomaterial dimensions with atomic precision through synthetic methods is essential to understanding and engineering of nanomaterials. For single-layer inorganic materials, size and shape controls have been achieved by self-assembly and surface-catalyzed reactions of building blocks deposited at a surface. However, the scope of nanostructures accessible by such approach is restricted by the limited choice of building blocks that can be thermally evaporated onto surfaces, such as atoms or thermostable molecules. Herein this limitation is bypassed by using mass-selected molecular ions obtained via electrospray ionization as building blocks to synthesize nanostructures that are inaccessible by conventional evaporation methods. As the first example, micron-scale production of MoS2 and WS2 nanoribbons and their heterostructures on graphene are shown by the self-assembly of asymmetrically shaped building blocks obtained from the electrospray. It is expected that judicious use of electrospray-generated building blocks would unlock access to previously inaccessible inorganic nanostructures.

5.
Nat Commun ; 15(1): 378, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191551

RESUMEN

The polarity of a surface can affect the electronic and structural properties of oxide thin films through electrostatic effects. Understanding the mechanism behind these effects requires knowledge of the atomic structure and electrostatic characteristics at the surface. In this study, we use annular bright-field imaging to investigate the surface structure of a Pr0.8Sr0.2NiO2+x (0 < x < 1) film. We observe a polar distortion coupled with octahedral rotations in a fully oxidized Pr0.8Sr0.2NiO3 sample, and a stronger polar distortion in a partially reduced sample. Its spatial depth extent is about three unit cells from the surface. Additionally, we use four-dimensional scanning transmission electron microscopy (4D-STEM) to directly image the local atomic electric field surrounding Ni atoms near the surface and discover distinct valence variations of Ni atoms, which are confirmed by atomic-resolution electron energy-loss spectroscopy (EELS). Our results suggest that the strong surface reconstruction in the reduced sample is closely related to the formation of oxygen vacancies from topochemical reduction. These findings provide insights into the understanding and evolution of surface polarity at the atomic level.

6.
ACS Nano ; 17(24): 25496-25506, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37992234

RESUMEN

Chiral plasmonic nanostructures possess a chiroptical response orders of magnitude stronger than that of natural biomolecular systems, making them highly promising for a wide range of biochemical, medical, and physical applications. Despite extensive efforts to artificially create and tune the chiroptical properties of chiral nanostructures through compositional and geometrical modifications, a fundamental understanding of their underlying mechanisms remains limited. In this study, we present a comprehensive investigation of individual gold nanohelices by using advanced analytical electron microscopy techniques. Our results, as determined by angle-resolved cathodoluminescence polarimetry measurements, reveal a strong correlation between the circular polarization state of the emitted far-field radiation and the handedness of the chiral nanostructure in terms of both its dominant circularity and directional intensity distribution. Further analyses, including electron energy-loss measurements and numerical simulations, demonstrate that this correlation is driven by longitudinal plasmonic modes that oscillate along the helical windings, much like straight nanorods of equal strength and length. However, due to the three-dimensional shape of the structures, these longitudinal modes induce dipolar transverse modes with charge oscillations along the short axis of the helices for certain resonance energies. Their radiative decay leads to observed emission in the visible range. Our findings provide insight into the radiative properties and underlying mechanisms of chiral plasmonic nanostructures and enable their future development and application in a wide range of fields, such as nano-optics, metamaterials, molecular physics, biochemistry, and, most promising, chiral sensing via plasmonically enhanced chiral optical spectroscopy techniques.

7.
Microsc Microanal ; 29(3): 869-878, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749687

RESUMEN

Halide perovskites (HPs) are promising candidates for optoelectronic devices, such as solar cells or light-emitting diodes. Despite recent progress in performance optimization and low-cost manufacturing, their commercialization remains hindered due to structural instabilities. While essential to the development of the technology, the relation between the microscopic properties of HPs and the relevant degradation mechanisms is still not well understood. The sensitivity of HPs toward electron-beam irradiation poses significant challenges for transmission electron microscopy (TEM) investigations of structure and degradation mechanisms at the atomic scale. However, technological advances and the development of direct electron cameras (DECs) have opened up a completely new field of electron microscopy: four-dimensional scanning TEM (4D-STEM). From a 4D-STEM dataset, it is possible to extract not only the intensity signal for any STEM detector geometry but also the phase information of the specimen. This work aims to show the potential of 4D-STEM, in particular, electron exit-wave phase reconstructions via focused probe ptychography as a low-dose and dose-efficient technique to image the atomic structure of beam-sensitive HPs. The damage mechanism under conventional irradiation is described and atomically resolved almost aberration-free phase images of three all-inorganic HPs, CsPbBr3, CsPbIBr2, and CsPbI3, are presented with a resolution down to the aperture-constrained diffraction limit.

8.
Microsc Microanal ; 29(2): 596-605, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37749724

RESUMEN

A novel focused ion beam (FIB)-based methodology for the preparation of clean and artifact-free specimens on micro-electro-mechanical-system (MEMS)-based chips for in-situ electrical and electro-thermal experiments in a (scanning) transmission electron microscope ((S)TEM) is introduced. Owing to an alternative geometry, the lamellae are attached to a MEMS-based chip directly after the lift-out procedure and afterward further treated or thinned to electron transparency. The quality of produced lamellae on a chip resembles the quality of a classical FIB-prepared sample that is here demonstrated by high-resolution STEM imaging and analytical techniques. Various sample preparation parameters and the performance of in-situ prepared samples have been evaluated through electrical-biasing experiments.

11.
Microsc Microanal ; 29(Supplement_1): 387-389, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613460
12.
Acta Biomater ; 169: 155-167, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574156

RESUMEN

Developmental Defects of Enamel (DDE) such as Dental Fluorosis (DF) and Molar Incisor Hypomineralization (MIH) are a major public health problem. Their clinical aspects are extremely variable, challenging their early and specific diagnosis and hindering progresses in restorative treatments. Here, a combination of macro-, micro- and nano-scale structural and chemical methods, including, among others, Atom Probe Tomography recently applied on tooth enamel, were used to study and compare MIH, DF and healthy teeth from 89 patients. Globally, we show that DF is characterized by an homogenous loss of mineral content and crystallinity mainly disrupting outside layer of enamel, whereas MIH is associated with localized defects in the depth of enamel where crystalline mineral particles are embedded in an organic phase. Only minor differences in elemental composition of the mineral phase could be detected at the nanoscale such as increased F and Fe content in both severe DDE. We demonstrate that an improved digital color measurement of clinical relevance can discriminate between DF and MIH lesions, both in mild and severe forms. Such discriminating ability was discussed in the light of enamel composition and structure, especially its microstructure, organics presence and metal content (Fe, Zn). Our results offer additional insights on DDE characterization and pathogenesis, highlight the potentiality of colorimetric measurements in their clinical diagnosis and provide leads to improve the performance of minimally invasive restorative strategies. STATEMENT OF SIGNIFICANCE: Developmental Defects of Enamel (DDE) are associated to caries and tooth loose affecting billions of people worldwide. Their precise characterization for adapted minimally invasive care with optimized materials is highly expected. Here In this study, first we propose the use of color parameters measured by a spectrophotometer as a means of differential clinical diagnosis. Second, we have used state-of-the-art techniques to systematically characterize the structure, chemical composition and mechanical optical properties of dental enamel teeth affected by two major DDE, Dental Fluorosis (DF) or Molar Incisor Hypomineralization (MIH). We evidence specific enamel structural and optical features for DF and MIH while chemical modifications of the mineral nanocrystals were mostly correlated with lesion severity. Our results pave the way of the concept of personalized dentistry. In the light of our results, we propose a new means of clinical diagnosis for an adapted and improved restoration protocol for these patients.


Asunto(s)
Defectos del Desarrollo del Esmalte , Fluorosis Dental , Humanos , Relevancia Clínica , Fluorosis Dental/diagnóstico , Fluorosis Dental/terapia , Fluorosis Dental/patología , Incisivo , Minerales , Prevalencia
13.
Proc Natl Acad Sci U S A ; 120(24): e2215722120, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279264

RESUMEN

The mixed-valent spinel LiV2O4 is known as the first oxide heavy-fermion system. There is a general consensus that a subtle interplay of charge, spin, and orbital degrees of freedom of correlated electrons plays a crucial role in the enhancement of quasi-particle mass, but the specific mechanism has remained yet elusive. A charge-ordering (CO) instability of V3+ and V4+ ions that is geometrically frustrated by the V pyrochlore sublattice from forming a long-range CO down to T = 0 K has been proposed as a prime candidate for the mechanism. Here, we uncover the hidden CO instability by applying epitaxial strain on single-crystalline LiV2O4 thin films. We find a crystallization of heavy fermions in a LiV2O4 film on MgO, where a charge-ordered insulator comprising of a stack of V3+ and V4+ layers along [001], the historical Verwey-type ordering, is stabilized by the in-plane tensile and out-of-plane compressive strains from the substrate. Our discovery of the [001] Verwey-type CO, together with previous realizations of a distinct [111] CO, evidence the close proximity of the heavy-fermion state to degenerate CO states mirroring the geometrical frustration of the V pyrochlore lattice, which supports the CO instability scenario for the mechanism behind the heavy-fermion formation.

14.
ACS Nano ; 17(12): 11521-11526, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37261718

RESUMEN

We present a study on the properties of superlattices made of ultrathin Sr2CuO4-δ layers sandwiched between La2CuO4 layers beyond the antiferromagnetic insulating nature of the individual layers of choice. Using molecular beam epitaxy, we synthesized these superlattices and observed superconductivity and metallicity at the interfaces. We probed the hole distribution to determine the discernible quantum states and found that the high-quality epitaxy, combined with mapping the electronic fine structure by electron energy-loss spectroscopy, allowed for the differentiation of insulating, metallic, and superconducting layers at the atomic-column scale. Our results demonstrate the possibility of exploring specific electronic properties at the subnanometer scale and highlight the potential of utilizing metastable Sr2CuO4-δ slabs.

15.
Nat Commun ; 14(1): 3638, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336926

RESUMEN

Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO6 octahedral rotations throughout LaCoO3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3d-O 2p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO3 films while suggesting potential applications toward low-power spintronic devices.

16.
Adv Sci (Weinh) ; 10(21): e2301495, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37163729

RESUMEN

One of the unsolved problems for using high-Tc superconducting cuprates for spintronic applications are the short coherence lengths of Cooper pairs in oxides (a few Å), which requires atomically sharp and defect-free interfaces. This research demonstrates the presence of high-Tc superconducting La1.84 Sr0.16 CuO4 in direct proximity to SrLaMnO4 and provides evidence for the sharpness of interfaces between the cuprate and the manganite layers at the atomic scale. These findings shed light on the impact of the chemical potential at the interface of distinct materials on highly sensitive physical properties, such as superconductivity. Additionally, this results show the high stability of ultrathin layers from the same K2 NiF4 -type family, specifically one unit cell of Sr2- x Lax MnO4 and three unit cells of La1.84 Sr0.16 CuO4 . This work advances both the fundamental understanding of the proximity region between superconducting cuprates and manganite phases and the potential use of oxide-based materials in quantum computing.

17.
Nano Lett ; 23(8): 3291-3297, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37027232

RESUMEN

The interface polarity plays a vital role in the physical properties of oxide heterointerfaces because it can cause specific modifications of the electronic and atomic structure. Reconstruction due to the strong polarity of the NdNiO2/SrTiO3 interface in recently discovered superconducting nickelate films may play an important role, as no superconductivity has been observed in the bulk. By employing four-dimensional scanning transmission electron microscopy and electron energy-loss spectroscopy, we studied effects of oxygen distribution, polyhedral distortion, elemental intermixing, and dimensionality in NdNiO2/SrTiO3 superlattices grown on SrTiO3 (001) substrates. Oxygen distribution maps show a gradual variation of the oxygen content in the nickelate layer. Remarkably, we demonstrate thickness-dependent interface reconstruction due to a polar discontinuity. An average cation displacement of ∼0.025 nm at interfaces in 8NdNiO2/4SrTiO3 superlattices is twice larger than that in 4NdNiO2/2SrTiO3 superlattices. Our results provide insights into the understanding of reconstructions at NdNiO2/SrTiO3 polar interfaces.

18.
Angew Chem Int Ed Engl ; 62(17): e202217253, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36744542

RESUMEN

Two-dimensional (2D) materials catalysts provide an atomic-scale view on a fascinating arena for understanding the mechanism of electrocatalytic carbon dioxide reduction (CO2 ECR). Here, we successfully exfoliated both layered and nonlayered ultra-thin metal phosphorous trichalcogenides (MPCh3 ) nanosheets via wet grinding exfoliation (WGE), and systematically investigated the mechanism of MPCh3 as catalysts for CO2 ECR. Unlike the layered CoPS3 and NiPS3 nanosheets, the active Sn atoms tend to be exposed on the surfaces of nonlayered SnPS3 nanosheets. Correspondingly, the nonlayered SnPS3 nanosheets exhibit clearly improved catalytic activity, showing formic acid selectivity up to 31.6 % with -7.51 mA cm-2 at -0.65 V vs. RHE. The enhanced catalytic performance can be attributed to the formation of HCOO* via the first proton-electron pair addition on the SnPS3 surface. These results provide a new avenue to understand the novel CO2 ECR mechanism of Sn-based and MPCh3 -based catalysts.

19.
Adv Mater ; 35(10): e2210989, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36585838

RESUMEN

The exploration of crystalline nanostructures enhances the understanding of quantum phenomena occurring in spatially confined quantum matter and may lead to functional materials with unforeseen applications. A novel route to fabricating nanocrystalline oxide structures of exceptional quality is presented. This is achieved by utilizing a self-assembly process of ultrathin membranes composed of the desired oxide. The thermally induced self-assembly of nanocrystalline structures is driven by dewetting the oxide membranes once they are lifted off and transferred onto sapphire surfaces. In three successive steps, the process provides nanovoids, nanowires, and nanocrystals. Regardless of substrate orientation, the nanostructures are highly anisotropic in shape due to material retraction favoring low-index crystalline lattice directions of the membranes. The orientation of the nanostructures is provided precisely by the crystal lattice of the transferred membrane. The microstructure of the nanocrystals exhibits exceptional quality, characterized by a pristine crystal structure and uniform stoichiometry, both maintained all the way down to the well-developed crystalline facets. The demonstrated self-assembly process holds the potential to improve the understanding of surface diffusion phenomena at the interface of materials, which is important for advancing epitaxial growth technology and paves the way to fabricating crystalline nanostructures by the transfer and self-assembly of membranes.

20.
NPJ 2D Mater Appl ; 7(1): 2, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665487

RESUMEN

The presence of metal atoms at the edges of graphene nanoribbons (GNRs) opens new possibilities toward tailoring their physical properties. We present here formation and high-resolution characterization of indium (In) chains on the edges of graphene-supported GNRs. The GNRs are formed when adsorbed hydrocarbon contamination crystallizes via laser heating into small ribbon-like patches of a second graphitic layer on a continuous graphene monolayer and onto which In is subsequently physical vapor deposited. Using aberration-corrected scanning transmission electron microscopy (STEM), we find that this leads to the preferential decoration of the edges of the overlying GNRs with multiple In atoms along their graphitic edges. Electron-beam irradiation during STEM induces migration of In atoms along the edges of the GNRs and triggers the formation of longer In atom chains during imaging. Density functional theory (DFT) calculations of GNRs similar to our experimentally observed structures indicate that both bare zigzag (ZZ) GNRs as well as In-terminated ZZ-GNRs have metallic character, whereas in contrast, In termination induces metallicity for otherwise semiconducting armchair (AC) GNRs. Our findings provide insights into the creation and properties of long linear metal atom chains at graphitic edges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...